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Introduction

The Basic Perturbation Lemma was discovered by Shih Weishu in
1960, and the abstract modern form was given by Ronnie Brown in
1964 (based on unpublished results by Barrat).
We have used it combined with the effective homology method, in
order to determine:

Homology of cones, bicomplexes, twisted Cartesian products, loop
spaces, classifying spaces...
Homotopy groups of spaces by means of Whitehead and Postnikov
towers.
Homology of digital images by means of Discrete Vector Fields.
Spectral sequences associated with filtered complexes (including Serre
and Eilenberg-Moore spectral sequences).
Persistent homology.
Koszul homology.
Bousfield-Kan spectral sequence for computing homotopy groups of
spaces.
Homology of groups.
Neuronal images processing.
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Effective homology

Definition

A reduction ρ between two chain complexes C∗ and D∗ (denoted by
ρ : C∗⇒⇒D∗) is a triple ρ = (f , g , h)

C∗

h
�� f

++ D∗
g

kk

satisfying the following relations:

1) fg = IdD∗ ;

2) dCh + hdC = IdC∗ −gf ;

3) fh = 0; hg = 0; hh = 0.

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, which implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Effective homology

Definition

A (strong chain) equivalence ε between C∗ and D∗, ε : C∗⇐⇐⇒⇒D∗, is a
triple ε = (B∗, ρ, ρ

′) where B∗ is a chain complex, ρ : B∗⇒⇒C∗ and
ρ′ : B∗⇒⇒D∗.

B∗
s{s{ #+ #+

42
30

t|t| "* "*
C∗ D∗

14
10

21
15

Definition

An object with effective homology is a quadruple (X ,C∗(X ),EC∗, ε) where
EC∗ is an effective chain complex and ε : C∗(X )⇐⇐⇒⇒EC∗.

This implies that Hn(X ) ∼= Hn(EC∗) for all n.
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Effective homology

Meta-theorem

Let X1, . . . ,Xk be a collection of objects with effective homology and Φ be
a reasonable construction process:

Φ : (X1, . . . ,Xk)→ X .

Then there exists a version with effective homology ΦEH

ΦEH : ((X1,C (X1),EC1, ε1), . . . , (Xk ,C (Xk),ECk , εk))→ (X ,C (X ),EC , ε)

The process is perfectly stable and can be again used with X for further
calculations.

Examples: twisted Cartesian products, loop spaces, suspensions, simplicial
Abelian groups generated by simplicial sets, . . . .
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The Kenzo system

The Kenzo system uses the notion of object with effective homology to
compute homology groups of some complicated spaces.

If the complex is effective, then its homology groups can be
determined by means of diagonalization algorithms on matrices.

Otherwise, the program uses the effective homology.

Example:

X = Ω(Ω(Ω(P∞R/P3R) ∪4 D4) ∪2 D2)

H5(X ) = Z23
2 ⊕ Z8 ⊕ Z16

H6(X ) = Z52
2 ⊕ Z3

4 ⊕ Z3

H7(X ) = Z113
2 ⊕ Z4 ⊕ Z3

8 ⊕ Z16 ⊕ Z32 ⊕ Z
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Perturbation theorems

Definition

Let (C∗, d) be a chain complex. A perturbation δ : C∗ → C∗−1 is an
operator of degree −1 satisfying (d + δ) ◦ (d + δ) = 0.

This produces a new perturbed chain complex (C∗, d + δ)

Let ρ = (f , g , h) be a reduction

(C∗, dC )

h
�� f --

(D∗, dD)
g

mm

What happens if we perturb dC or dD?
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Perturbation theorems

Theorem (Trivial Perturbation Lemma, TPL)

Let ρ = (f , g , h) : C∗⇒⇒D∗ be a reduction, and δD a perturbation of dD .

Then we have a new reduction: (C∗, dC + δC )

h
�� f ..

(D∗, dD + δD)
g

nn

where δC = g ◦ δD ◦ f .
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Perturbation theorems

Theorem (Basic Perturbation Lemma, BPL)

Let ρ = (f , g , h) : C∗⇒⇒D∗ be a reduction, and δC a perturbation of dC
such that the composition h ◦ δC is pointwise nilpotent. Then we have a

new reduction: (C∗, dC + δC )

h′

�� f ′ ..
(D∗, dD + δD)

g ′
nn where

δD = f ◦ δC ◦ φ ◦ g = f ◦ ψ ◦ δC ◦ g;

f ′ = f ◦ ψ = f ◦ (IdC∗ −δC ◦ φ ◦ h);

g ′ = φ ◦ g;

h′ = φ ◦ h = h ◦ ψ;

with the operators φ and ψ defined by

φ =
∞∑
i=0

(−1)i (h ◦ δC )i , ψ =
∞∑
i=0

(−1)i (δC ◦ h)i = IdC∗ −δC ◦ φ ◦ h
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Algebraic cone construction

Definition

Let Φ : (C∗, dC )→ (D∗, dD) be a chain complex morphism. The Cone
of Φ, Cone(Φ)∗ ≡ (A∗, dA), is a chain complex given by An = Cn ⊕ Dn+1,
with differential map dA(c , d) = (dC (c),Φ(c)− dD(d)).

. . . Cn−1 Cn Cn+1 Cn+2 . . .

An−1 An An+1 An+2

. . . Dn Dn+1 Dn+2 Dn+3 . . .

Φn Φn+1 Φn+2

dCn
dCn+1 dCn+2

−dDn+1 −dDn+2 −dDn+3

oo oo oo oo oo

oo oo oo oo oo�� ���� �� ��
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Algebraic cone construction

Theorem

A general algorithm can be produced:

Input: Φ : C∗ → D∗ and effective homologies for C∗ and D∗.

Output: An effective homology for A∗ = Cone(Φ).

Proof:

1 Particular case Φ = 0
(direct sum).

2 We install Φ.

3 We apply the BPL.
EC∗ ED∗

C∗ D∗

.

.

Φ //

h′Φh

��

f ′Φh

''h′Φg

77

f ′Φg
//

h ?? h′__

f
��
g

OO
f ′
��
g ′
OO

[
dC 0
Φ −dD

] [
dEC 0
f ′Φg −dED

] [
f 0

f ′Φh f ′

] [
g 0

−h′Φg g ′

] [
h 0

h′Φh −h′
]

DA DA′ F G H
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Bicomplex

Definition

A bicomplex C∗,∗ is a bigraded free Z-module C∗,∗ = {Cp,q}p,q∈Z provided
with morphisms d ′p,q : Cp,q → Cp−1,q and d ′′p,q : Cp,q → Cp,q−1 satisfying
d ′p−1,q ◦ d ′p,q = 0, d ′′p,q−1 ◦ d ′′p,q = 0, and d ′p,q−1 ◦ d ′′p,q + d ′′p−1,q ◦ d ′p,q = 0.
The total (chain) complex T∗ = T∗(C∗,∗) = (Tn, dn)n∈Z is the chain
complex given by Tn =

⊕
p+q=n Cp,q and differential map

dn(x) = d ′p,q(x) + d ′′p,q(x) for x ∈ Cp,q.

C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

C0,2 C1,2 C2,2 C3,2

C0,3 C1,3 C2,3 C3,3

p

q

//

OO

oo oo oo

oo oo oo

oo d′oo oo

oo oo oo

��

��

��

��

��

��

��

d′′ ��

��

��

��

��
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Bicomplex

Theorem

A general algorithm can be produced:

Input: A bounded bicomplex C∗ and effective homologies of each
column.

Output: An effective homology for C∗.

Proof:

1 We consider only
the vertical
arrows.

2 We perturb by
adding the
horizontal maps.

3 We apply the
BPL.

C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

C0,2 C1,2 C2,2 C3,2

C0,3 C1,3 C2,3 C3,3

EC0
0 EC1

0 EC2
0 EC3

0

EC0
1 EC1

1 EC2
1 EC3

1

EC0
2 EC1

2 EC2
2 EC3

2

EC0
3 EC1

3 EC2
3 EC3

3

p

q

p

q

//

OO

//

OO

f

++

f --
f

00

gss
g

pp g

nn

h

hh

h
hh

hff

Julio Rubio Effective Homology: Perturbation Lemma and Applications HTCA School 13 / 34



Twisted Eilenberg-Zilber Theorem

Theorem (Eilenberg-Zilber)

Given two simplicial sets G and B, there exists a reduction

ρ = (f , g , h) : C∗(G × B)⇒⇒C∗(G )⊗ C∗(B)

Theorem (Twisted Eilenberg-Zilber)

Given two simplicial sets G and B and a twisting operator τ : B → G , it is
possible to construct a reduction

ρ = (f , g , h) : C∗(G ×τ B)⇒⇒C∗(G )⊗t C∗(B)

where C∗(G )⊗t C∗(B) is a chain complex with the same underlying
graded module as the tensor product C∗(G )⊗ C∗(B), but the differential
is modified to take account of the twisting operator τ .

Proof: BPL.
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Effective homology of twisted Cartesian products

Theorem

A general algorithm can be produced:

Input: two simplicial sets G and B (where B is 1-reduced), a twisting
operator τ : B → G , and effective homologies for G and B.

Output: An effective homology for E = G ×τ B.

Proof: It is constructed as the composition of two equivalences:

C∗(G ×τ B)
Id

s{s{
ρ1

$, $,

DG∗ ⊗t DB∗
ρ2

rzrz
ρ3

#+ #+
C∗(G ×τ B) C∗(G )⊗t C∗(B) EG∗ ⊗t EB∗

where ρ2 and ρ3 are obtained by applying the TPL and the BPL
respectively.
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Effective homology of the fiber of a fibration

Theorem

A general algorithm can be produced:

Input: two simplicial sets G and B (where B is 1-reduced) and a
twisting operator τ : B → G , and effective homologies for B and
E = G ×τ B.

Output: An effective homology for G .

Proof: It is constructed as the composition of two equivalences:

CobarC∗(B)(C∗(G )⊗t C∗(B),Z)

u}u}
Id
&. &.

C̃obar
DB∗

(DE∗,Z)

rzrz
 (  (

C∗(G ) CobarC∗(B)(C∗(G )⊗t C∗(B),Z) C̃obar
EB∗

(EE∗,Z)

In particular, it can be applied for computing the effective homology of a
loop space Ω(X ), which is the fiber of a fibration
Ω(X ) ↪→ Ω(X )×τ X → X where the total space E = Ω(X )×τ X is
contractible, such that a reduction C∗(Ω(X )×τ X )⇒⇒Z can be built.
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Discrete Morse theory

Definition

Let C∗ = (Cp, dp)p∈Z a free chain complex with distinguished Z-basis
βp ⊂ Cp. A discrete vector field V on C∗ is a collection of pairs
V = {(σi ; τi )}i∈I satisfying the conditions:

Every σi is some element of βp, in which case τi ∈ βp+1. The degree p
depends on i and in general is not constant.

Every component σi is a regular face of the corresponding τi .

Each generator (cell) of C∗ appears at most one time in V .

Definition

A V -path of degree p and length m is a sequence π = ((σik , τik ))0≤k<m

satisfying:

Every pair ((σik , τik )) is a component of V and τik is a p-cell.

For every 0 < k < m, the component σik is a face of τik−1
, non necessarily

regular, but different from σik−1
.
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Discrete Morse theory

Definition

A discrete vector field V is admissible if for every p ∈ Z, a function
λp : βp → N is provided satisfying the following property: every V -path
starting from σ ∈ βp has a length bounded by λp(σ).

Definition

A cell σ which does not appear in a discrete vector field V is called a
critical cell.

Theorem

Let C∗ = (Cp, dp)p∈Z be a free chain complex and V = {(σi ; τi )}i∈I be an
admissible discrete vector field on C∗. Then the vector field V defines a
canonical reduction ρ = (f , g , h) : (Cp, dp)⇒⇒ (C c

p , d
′
p) where C c

p = Z[βcp ]
is the free Z-module generated by the critical p-cells.

Proof: Uses BPL.
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Discrete Morse theory and digital images

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • •

• • •

16 vertices
24 edges

8 squares

•
1 vertex
1 edge
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Other applications of BPL and effective homology

Homotopy groups of spaces by means of Whitehead and Postnikov
towers.

Spectral sequences of filtered complexes.

Persistent homology.

Koszul homology.

Bousfield-Kan spectral sequence.

Homology of groups.

Neuronal images processing.
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Homology of groups

Definition

A resolution F∗ for a group G is an acyclic chain complex of ZG -modules

· · · −→ F2
d2−→ F1

d1−→ F0
ε−→ F−1 = Z −→ 0

A chain complex of Abelian groups is obtained: Z⊗ZG F∗

Theorem

Let G be a group and F∗, F ′∗ two free resolutions of G . Then

Hn(Z⊗ZG F∗) ∼= Hn(Z⊗ZG F ′∗)
∼= Hn(K (G , 1)) for all n ∈ N
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Homology of groups

Definition

Given a group G , the homology groups Hn(G ) are defined as
Hn(G ) = Hn(Z⊗ZG F∗), n ∈ N, where F∗ is any free resolution for G .

One can always consider the bar resolution B∗ = Bar∗(G ), which satisfies
Z⊗ZG B∗ ≡ C∗(K (G , 1)). Drawback: for n > 1, K (G , 1)n = Gn.

For some particular cases, small (or minimal) resolutions can be directly
constructed.

For instance, let G = Cm with generator t. The resolution F∗

· · · t−1−→ ZG
N−→ ZG

t−1−→ ZG−→Z −→ 0

produces

Hi (G ) =


Z if i = 0
Z/mZ if i is odd
0 if i is even, i > 0
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Algorithm computing the effective homology of a group

Given G a group, F∗ a (small) free ZG -resolution with a contracting
homotopy hn : Fn → Fn+1.

Goal: an equivalence C∗(K (G , 1))⇐⇐⇒⇒E∗ where E∗ is an effective chain
complex.

We consider the bar resolution B∗ = Bar∗(G ) for G with contracting
homotopy h′.

It is well known that there exists a morphism of chain complexes of
ZG -modules f : B∗ → F∗ which is a homotopy equivalence. An algorithm
has been designed constructing the explicit expressions of f and the
corresponding maps g , h and k

B∗

h
�� f

++ F∗
g

kk

k
��
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Algorithm computing the effective homology of a group

Applying the functor Z⊗ZG − we obtain an equivalence of chain
complexes (of Z-modules):

Z⊗ZG B∗

h
�� f -- Z⊗ZG F∗

g
mm

k
��

In order to obtain a strong chain equivalence we make use of the mapping
cylinder construction.

Z⊗ZG B∗
ρ′⇐⇐ Cylinder(f )∗

ρ⇒⇒ Z⊗ZG F∗

Finally we observe that the left chain complex Z⊗ZG B∗ is equal to
C∗(K (G , 1)). Moreover, if the initial resolution F∗ is of finite type (and
small), then the right chain complex Z⊗ZG F∗ ≡ E∗ is effective.
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Algorithm computing the effective homology of a group

Theorem

A general algorithm can be produced:

Input: a group G and a free resolution F∗ of finite type with
contracting homotopy.

Output: the effective homology of K (G , 1), that is, a (strong chain)
equivalence C∗(K (G , 1))⇐⇐⇒⇒E∗ where E∗ is an effective chain
complex.

Implemented in Common Lisp, enhancing the Kenzo system.

It allows to compute homology of groups and, what is more
important, to use the space K (G , 1) in other constructions allowing
new computations.
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Zigzag persistence

The theory of zigzag persistence provides an extension of persistent
homology to diagrams of topological spaces of the form:

X1 ↔ X2 ↔ · · · ↔ Xm

where the arrows can point either left or right.

For each n ∈ N, the associated sequence of vector spaces and linear
maps:

Hn(X1)↔ Hn(X2)↔ · · · ↔ Hn(Xm)

is called a zigzag module.
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Zigzag persistence

Zigzag modules can be decomposed as a direct sum of submodules
W i of the form

0↔ · · · ↔ 0↔W i
ai

= F↔ · · · ↔W i
bi

= F↔ 0↔ · · · ↔ 0

for some 1 ≤ ai ≤ bi ≤ m, where F is the base field and all arrows are
the identity map. In this way, zigzag modules can be classified up to
isomorphism by a multi-set of intervals {[ai , bi ]} with
1 ≤ ai ≤ bi ≤ m and represented by means of barcode diagrams.

Zigzag persistence can be useful for studying the relations of the
homology classes of different subspaces X1, . . . ,Xm of a topological
space X when a filtration is not defined. To this aim, one considers
the sequence:

X1 ↪→ X1 ∪ X2 ←↩ X2 ↪→ X2 ∪ X3 ←↩ · · · ↪→ Xm−1 ∪ Xm ←↩ Xm
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Zigzag persistence

X1 X2 X3

X1 ∪ X2 X2 ∪ X3

1 2 3

β0

β1

Both persistent homology and zigzag persistence allow us to detect the
structure of a neuron from a stack of images.
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NeuronZigZagJ

Si

Si ∪ Si+1
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NeuronZigZagJ

Algorithm formalized by means of zigzag persistence:

For each slice Si we consider the associated simplicial complex,
denoted Xi . It is a topological space and its homology groups in
dimension 0 determine the connected components of the image Si .

Similarly for the simplicial complex associated to the union Si ∪ Si+1

which is in fact equal to Xi ∪ Xi+1.

Then one has the following diagram

X1 ↪→ X1 ∪ X2 ←↩ X2 ↪→ X2 ∪ X3 ←↩ · · · ↪→ Xm−1 ∪ Xm ←↩ Xm

and the corresponding zigzag module for degree 0:

H0(X1)→ H0(X1 ∪ X2)← H0(X2)→ H0(X2 ∪ X3)←
· · · → H0(Xm−1 ∪ Xm)← H0(Xm)
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NeuronZigZagJ

In a more realistic situation the complete 3D image is not available
because the microscope provides only a stack of several 2D images
I1, . . . , Im.

We binarize each slice and determine the maximal projection of the
resulting binary images S1, . . . ,Sm.

We can apply our algorithm as in the “good” situation.

In some cases, depending on the type of images to be studied, we
replace the union Si ∪ Si+1 by the binarization of the maximal
projection of the initial images Ii and Ii+1.

The algorithm returns an approximation of the desired projection of
the different connected components of the 3D object.
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NeuronZigZagJ

Output:
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Conclusions

The Basic Perturbation Lemma is not basic.

Combined with the effective homology method, it can be used for
computing homology and homotopy groups of different spaces and
other constructions of Algebraic Topology such as spectral sequences,
persistent homology, homology of groups. . .
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